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ABSTRACT

Developing language understanding (NLU) methods for low re-
source domains is an ongoing challenge. The air-traffic control
(ATC) domain is a paragon of this. There is a high pressure
for automatized solutions to ease the workload of air-traffic con-
trollers (ATCOs), but a low availability of open-source datasets.
The available datasets contain mostly unlabeled transcripts, tar-
geting automatic speech recognition (ASR) and cover just one
or a few airspaces. Models trained on these airspaces might
fail on unseen target airspace. We evaluate different methods to
overcome this problem on the task of read-back error detection
(RED), which uncovers mistakes in ATCO-pilot communication
to prevent incidents. We generate noisy labels for our two stage
RED approach, that combines data augmentation and noisy la-
bels. This allows the use of unlabeled data of non-target airspaces
to increase the performance on the target airspaces with a relative
improvement of 35% over the baseline method.

Index Terms— data augmentation, noisy labels, read-back-
error detection, air-traffic control, class imbalance

1. INTRODUCTION

There is a high demand for machine learning (ML) based so-
lutions in air traffic control to improve security, reliability, and
safety. Degas et al. [1] provide an overview of the research in
this area. To ensure high-quality machine learning tools, the Eu-
ropean Union Aviation Safety Agency (EASA) published a guide
for machine learning applications [2]. Assistant tools like auto-
pilot or arrival manager [3] are already common tools to ease the
daily work of pilots and air-traffic controllers. The high workload
of air-traffic controllers (ATCOs) can lead to errors in communi-
cation and these errors can lead to incidents and accidents [4].
With air-traffic control (ATC) being responsible for 6-10% of air-
craft crashes [5], incidents not included, assistant tools can play
an important role in crash avoidance. Research projects like Mal-
orca1 or ATCO22 are focusing on developing such assistant tools
and also databases to train them on [6]. Promising approaches
rely on speech processing of ATCO and pilot communication.
Outcomes of ATCO2 are for example a pipeline for collecting

1MALORCA Homepage: https://www.malorca-project.de/
2ATCO2 Homepage: https://www.atco2.org/

and annotating air-traffic communication [7] and a tool for rec-
ognizing callsigns in noisy air-traffic transcripts by using surveil-
lance information [8]. These tools can reduce the ATCO work-
load and therefore indirectly reduce the chances of accidents.

A more straightforward approach is to employ automatic
read-back error detection (RED) systems. The idea behind such
a system is to directly detect mistakes in ATCO-pilot communi-
cation. A standard procedure of ATC communication involves
the pilot reading back the command the ATCO has given. A
pilot could for example answer with Turning right 20
degrees to the ATCO command LUF674F turn right
20 degrees. Each ATCO utterance should ideally start with
the callsign of the addressed plane, in the example, this would
be LUF674F. The callsign is followed up by a command turn
right and the associated value 20 degrees. The read-back
of the command and value by the pilot is crucial, since it ensures,
that there are no misunderstandings. To rule out, that the wrong
pilot follows a command, the callsign of the plane is also read
back in most of these cases.

In longer conversations, the read-back can also miss the call-
sign or include abbreviated versions of the callsign as stated by
Blatt et al. [8], which complicates read-back error classification.
To further complicate the matter, read-back errors occur just in
1-4% of the uttered commands [9–11]. Additionally there ex-
ist no publicly available datasets for RED. Furthermore, auto-
matic speech recognition (ASR) datasets for ATC that could be
labeled, might not contain data from desired the target airspaces.
All this makes it difficult to train machine-learning based meth-
ods for read-back error systems. This is one of the reasons, why
other ML based systems focus on binary read-back error classifi-
cation [11–15].

In this paper, we investigate methods to handle this low-
resource problem and propose to the best of our knowledge the
first benchmarks for a fully ML-based multi-class read-back error
recognition system.

2. RELATED WORK

Because of the severe consequences, causes of ATC errors are
the target of several studies. Marrow et al. [16] identify amongst
others the length of an ATC message and the amount of traffic as
causes for errors in ATC communications. Cardosi et al. [4] un-
cover wrong pilot expectations, pilots sharing the same frequency
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and a high controller workload as additional factors. In a more
recent work by Wu et al. [17] a correlation between pilot accents
and miscommunication is stated.

An early machine learning based read-back error detection
method is implemented by Chen et al. [12]. They propose an
automatic speech recognition (ASR) based system, that features
a GUI to display read-back error alerts. Jia et al. [14] use an
LSTM-based model for binary read-back error detection of tran-
scribed Chinese ATC utterances. They achieve an accuracy of
94%. However, due to the seldom occurrence of read-back errors,
the system is evaluated on synthetically generated read-back er-
ror samples. A two-step approach is taken by Helmke at al. [15].
In the first step, the ATC transcripts are converted either rule-
based or transformer [18] based into a standardized ATC phrase-
ology. They use a rule-based model for identifying individual use
cases which also include read-back error cases. Alternatively, a
BERT [19] based approach is used for read-back error detection.
But due to the low occurrence of read-back errors and the result-
ing class imbalances in the training data, they opt for binary clas-
sification in their machine-learning-based approach. On real-life
ops-room recordings, they reach an F1 score of 47% when com-
bining the data-driven and rule-based read-back error detection
system.

In contrast to previous works, our system relies purely on a
machine-learning based approach. By employing techniques to
handle class imbalance and using out-of-airspace data, our sys-
tem is able to effectively detect different read-back error classes.
The classes used in our RED are the result of grouping opera-
tional scenarios with different degrees of severity by our ATC ex-
perts. They provide the ATCO with more feedback than a binary
RED.

One of those techniques is generating noisy labels. We es-
pecially build on two previous noisy label works. Firstly, Zhu
at al. [20] have shown that noisy labels can be used with BERT
without using advanced noise handling methods, like noise matri-
ces. Secondly Goh et al. [21] used a two-step approach, in which
they fine-tune their model in a first step on noisy labeled data and
then fine-tune it a second time on clean data, to avoid overfitting
on the noisy labels.

3. METHODS

In the following, we will describe how we build our dataset and
describe the methods used for read-back error detection.

3.1. Read-back Error Classes

In the scope of this paper, we focus on pair-wise read-back error
detection, meaning, that we look at errors occurring in an an-
swer from a pilot to an ATCO command. We consider 5 different
classes for read-back error detection. Examples of ATCO-pilot
utterance pairs for each class are given in Table 1.

If no read-back errors are detected, the utterance pair is la-
beled as Correct. If there are two commands given by an

Table 1: Read-back Error Classes

Error Class Example

Correct ATCO: AFR617 contact Maastricht
132.755 bye bye
PILOT: 132 755

Partial ATCO: 7AW climb flight level 300
and turn right by 10 degrees

PILOT: Turning right 10 degrees

Wrong ATCO: Beauty 4306 descend to flight level
250
PILOT: Descend flight level 350 confirm

Missing ATCO: Roger, call you back very shortly
maintain 330
PILOT: thank you

Wrong Pair ATCO: KLM9F climb flight level 310
PILOT: did you just call DLH89F

ATCO and just one is correctly read back, this is Partial read-
back. A pair is labeled as Wrong if a pilot reads an incorrect
command back, for example, the wrong turning angle. If there
is no read-back at all, it is labeled as Missing. Wrong Pair
covers two possible cases. In one case, the pilot utterance is com-
pletely unrelated to the ATCO command, this for example hap-
pens, when a new plane enters the airspace and the pilot makes
contact with the ATC just after a command is spoken to another
plane. The second, more problematic case is, that the wrong pilot
answers a command which was not meant for him. The analysis
of our dataset has shown, that this is the case for less then 10%
of the Wrong pair samples.

3.2. Data Labeling

The ATC transcripts for building our corpus are collected from
two ATC corpora, namely the LiveATC and the LDC-atcc cor-
pus. The LDC-atcc corpus [22] consists of ATC communica-
tion and transcripts from the airspaces surrounding the follow-
ing airports: Dallas Fort Worth International (KDFW), Logan In-
ternational (KBOS) and Washington National Airport (KDCA).
The LiveATC dataset, collected during the ATCO2 project [7],
consists of transcripts from the ATC radio, recorded from the
LiveATC website 3. LiveATC provides live streams of ATC com-
munications for different airport airspaces. For the read-back er-
ror detection dataset, samples from Amsterdam Airport Schiphol
(EHAM), Dublin Airport (EIDW), Göteborg Landvetter Airport
(ESGG), Zurich Airport (LSZH), and Stockholm Västerås Air-
port (ESOW) are used.

Both datasets are pooled and ATCO-pilot pairs are extracted
based on timestamps. To label the pairs efficiently, a dataset of

3LiveATC website: https://www.liveatc.net/

https://www.liveatc.net/


Table 2: Class distribution of samples in the initial pool, col-
lected by active learning (AL), data augmentation (Aug), and rule
based system (Noisy)

Method Partial Missing Correct Wrong Wrong
pair Total

Initial 93 66 712 41 40 952
AL 84 58 138 6 31 317
Aug 763 499 0 514 0 1776
Noisy 1188 1143 4469 1898 1407 10105

952 samples is build by manually categorizing these pairs into
the classes listed in Table 1. The manual labelling is performed
by the author and supported by experts of the ATC domain to en-
sure proper labeling and the selection of proper read-back error
classes. The rest of the samples is labeled using active learning
(AL). We first train a bert-base-uncased model on the initial data
pool and then use the prediction entropy technique [23] to select
20 additional samples out of the unlabeled pool. This cycle is re-
iterated, with the training pool growing with each iteration, until a
total of 317 extra samples are acquired. This raises the likelihood
of discovering informative sample pairs within the data pool.

After active learning, the sample pool consists of 1232 sam-
ples as Table 2 shows. It should be mentioned, that the AL does
not change the label distribution significantly.

The label distribution for the different airports after the ac-
tive learning step is displayed in Figure 1. As already dis-
cussed in previous works, the distribution is unbalanced, with
the Correct class making up more than 60% of the sam-
ples. One way to address this is to perform data augmentation as
described in subsection 3.4

3.3. Number Standardization

A closer look at Table 1 shows that the comparison of command
values between ATCO and pilot transcripts can be sufficient to
classify the pair. For the Correct read-back in Table 1 for ex-
ample, the pilot and command utterance contain the same value,
132755. For the distinction between the Wrong Pair class
and the other classes, the comparison of the callsigns in ATCO
and pilot transcripts is equally important. Since command values
and callsigns contain both digits, a classification could be further
simplified by just matching digits between the pilot and ATCO
utterance.

The main problem with this concept is, that numbers are not
spelled out in a standardized format. The number 444 could be
uttered for example as four four four, four hundred
four or triple four. This makes a matching difficult. To
overcome this issue, we format each number in a standard format
by splitting it into its individual digits by using a tool provided
by Brandhsu et al. [24].

(a) Label distribution across the different airport airspaces.

(b) Label distribution over airport airspaces after data augmentation.

Fig. 1: Label distribution before (a) and after (b) data augmenta-
tion.

3.4. Data Augmentation

To address the low occurrence of read-back error cases, we aug-
mented the read-back error classes in the training data. No aug-
mentation is done for the test data, to ensure a realistic testing
scenario. For the Wrong and Missing class, we formulate
search patterns for the commands and the corresponding values,
similar to regular expressions. For Wrong read-back, the val-
ues in the pilot read-back of the Correct pairs are altered by
changing numbers via substituting, deleting or adding digits, e.g
turn 10 degrees is changed to turn 20 degrees. For
Missing read-back, the command and value in the Correct
read-back pairs are completely removed. To augment Partial
read-back, ATCO-pilot pairs are generated by combining a call-
sign with two of the isolated commands and values to create an
ATCO transcript. For the pilot read-back, just one of the issued
commands is used. The Correct and Wrong pair labels are
not augmented, since the read-back error classifier already works
sufficiently well on these classes before augmentation.

Figure 1(b) shows the label distribution of each airport
airspace after the augmentation. In comparison with Figure 1(a),
the higher frequency of read-back error cases is clearly visible.
This leads to a more balanced training data set, which prevents
overfitting on the Correct class.



3.5. Noisy Labeling

Transformer-based models, require a sufficient amount of train-
ing data to achieve competitive results, especially for an unseen
domain. Annotating error classes for RED on the other hand,
requires a significant amount of effort and needs experts from
the air traffic control field, since ATCO utterances can contain
multiple commands. It is crucial to carefully verify the presence
of all these commands in order to identify the type of error cor-
rectly. An alternative to this time consuming labeling are noisy
labels. For our noisy labeling approach, we collect the unlabelled
ATCO-pilot samples from the LDC-atcc corpus, namely from the
Logan and DFW airspaces in the United States. Our rule-based
system for generating noisy labels consists of the following steps:

1. First, we extract the command values from the ATCO com-
mands for number groups and special word groups. For
example, the command bizex three twenty nine
turn left heading one correction zero
niner zero would have left, and zero niner
zero as extracted groups. The script is carefully con-
structed to cover all possible ATCO commands.

2. In the next step, we match the extracted ATCO command
values with the pilot read-back. If all the extracted com-
mand values are present in the read-back in the same order,
it is classified as a Correct read-back. If none of the
command values are present, it is a Missing read-back,
and if only a fraction of several commands is read back by
the pilot, it is a Partial read-back. If the order of com-
mand values is shuffled or if one or more numbers/words
are missing, it is classified as a Wrong read-back.

3. To identify Wrong pair samples, we extract the callsign
from the ATCO command, including the aircraft name and
code and match it with the pilot read-back. This helps to
recognize if the pilots read-back contains complete, partial
or missing callsigns.

4. Wrong pair read-back classes occur when a different
pilot than expected responds to the ATCO command (see
Table 1) or when a new pilot starts communicating on a
specific frequency. The missing callsign along with miss-
ing command values identified in the previous steps are an
indicator for a different pilot responding to the ATCO com-
mand. A greeting in a pilot read-back indicates that a new
pilot is speaking, since a greeting never happens after an
ATCO command is given.

For reproducibility, our noisy labeling method is made publicly
available 4. In the next section we will explain how we use the
noisy labeled data and our rule-based method for read-back error
detection.

4https://github.com/uds-lsv/RulebasedRED

4. EXPERIMENTAL SETUP

We are investigating the scenario, where the read-back error sys-
tem is only tested on unseen airspaces, to examine the inter-
airspace transferabilty of the different algorithms. We do not
generate augmented data for the test airspace to ensure a realistic
test scenario. Figure 1 shows, that without augmentation, there
exist just a few samples for the majority of the read-back error
classes per airport. For each test airport, we use the (augmented)
data for training data whereas the validation data only consists of
high quality manually annotated data. Both train and validation
data do not contain any data from the test airspace nor is it used
to perform augmentation. In the cross-validated experiments, we
take the mean of all airports for three seeds and present the mean
and standard deviation of it.

BERT (bert-base-uncased) is used as read-back error clas-
sifier, similar to Helmke et al. [15]. The transcript pairs are
fed into the recognizer in the following format: [CLS] ATCO
transcript [SEP] Pilot transcript [SEP]. The
recognizer is trained with the ADAM optimizer with a learning
rate of 2e−5 and cross-entropy loss with early stopping is used to
avoid overfitting.

We test six different methods to improve the RED. The first
method is our rule-based system to create the noisy labels, called
”Rule-based” in Table 3, which is directly applied to the test
data. The second method is a BERT-baseline without any meth-
ods applied to handle the class imbalance, respectively the low-
resource scenario. In the third method, weighted cross entropy
loss (w. CE) is used to handle the class imbalance. The fourth
method consists of augmenting the training data as described in
subsection 3.4. The fifth method uses the noisy labeled data, de-
scribed in subsection 3.5. Zhu et al. [20] have shown that spe-
cial noise-handling methods like Co-teaching or noise matrices
are not needed for BERT models and can even harm the perfor-
mance. However, if there is clean data available for training, Goh
et al. [21] have shown that using a two-stage training process can
increase the performance, if the model is finetuned first on the
noisy labels and then on clean data. This is due to the reason, that
in most cases there is more noisy than clean labeled data. Exper-
iments have shown that models will overfit on the noisy labels,
which degrades the system’s performance. We therefore apply
the two-step approach by Goh et al. [21] to avoid overfitting.

In the sixth method, we make use of all the available datasets,
including manually annotated, augmented and noisy data, in an
two-stage noisy + augmented training. In this approach, the noisy
labels are used to initially fine-tune a pre-trained BERT-base-
uncased model, which is then further fine-tuned with both aug-
mented and manually annotated datasets. It should be noted, that
the augmented data is only included in the training, while the val-
idation set consists solely of manually annotated data. The preci-
sion, recall, F1-score and accuracy metric for each of the model
used in the experiment is calculated.



Table 3: Scores for training without target airport for the different data handling methods. Scores are given as the macro average of all
read-back error classes. The experiments are repeated thrice and the mean is given. The standard deviation is given in brackets.

Method Precision Recall F1 Accuracy

Rule-based 38.46 45.26 38.46 61.21
Baseline 49.94 (±0.8) 44.05 (±0.9) 43.77 (±1.3) 73.6 (±0.3)
w. CE 45.8 (±3.6) 45.11 (±4.9) 42.97 (±3.9) 74.23 (±0.5)
Aug 49.5 (±0.2) 51.6 (±2.3) 45.28 (±1.1) 63.03 (±4.1)

Two-stage noisy 54.68 (±2.7) 49.73 (±0.8) 49.35 (±0.7) 75.90 (±0.2)
Two-stage noisy + aug 60.8 (±1.7) 66.98 (±2.5) 59.11 (±1.8) 73.98 (±7.1)

5. RESULTS

We show in the following the results of training our RED system
with the six different methods explained in section 4 to evaluate
the inter-airspace transferability of the methods. Table 3 shows
the precision, recall, F1 scores and accuracies for each method.

The results show, that our rule-based system for producing
noisy labels performs reasonably well with a 5% lower F1 score
than the baseline model. The best F1, precision and recall scores
are reached for the two-stage approach with noisy labels and aug-
mented data. This method outperforms the baseline with over
15%. Even the second best algorithm, the two-stage noisy ap-
proach, has still a 10% lower F1 score than the best method. This
is surprising since just using augmented data gives less than 2%
improvement over the baseline. These findings underline the im-
portance of combining the augmentation approach with the two-
step noisy approach.

To get a better understanding of the class-wise performance,
the F1, recall and precision scores for each class are shown in
Table 4.

Looking at the precision scores, there is no model that clearly
outperforms the others, but the rule-based labeling approach per-
forms best for two classes, namely Partial and Wrong. This
indicates, that the rules for those classes are well designed, since
they filter out the other classes effectively. This holds true es-
pecially for the Wrong class, where just the two-stage noisy +
augmented approach reaches a similar precision value. But the
main goal of RED is incident avoidance. When it comes to in-
cident avoidance, the recall values are more important than the
precision values, since a high recall value ensures, that no er-
ror case is missed. For all the error cases, except for Wrong
pair, the two-stage approach with noisy labels and augmented
data shows the highest scores. For the Correct and Wrong
pair class the weighted cross-entropy reaches the highest score.
The same pattern can be seen for the F1 scores. It should be
however noted, that the two-stage approach with noisy labels and
augmented data outperforms all other methods on the Wrong
class by a considerable margin, probably benefiting from the rule-
based noisy labels. Interestingly, the pure two-stage noisy la-
bels approach cannot reach similar performance levels, proba-
bly due to the small number of clean labels. To put the perfor-
mance of our best method into perspective, we compare it with

the RED systems presented by Helmke et al. [15]. Their solely
machine-learning based system in [15] reaches for comparison
on a dataset consisting of Isavia ops-room transcripts, which even
includes transcripts of the target airport, an F1 score of 29% for
the binary classification of read-back OK and read-back
ERROR. Their highest scoring hybrid system, which combines a
rule-based and ML approach, reaches an F1 score of 47%. Our
two-stage approach with noisy labels and augmented data reaches
without ever having seen the target airport an F1 score of 59.11%
with a low standard deviation of 1.8%, but for multi-class read-
back error detection, instead for binary detection.

To understand better why the two-stage approach with noisy
labels and augmented data performs so well, the F1 scores for all
methods are plotted for each airport airspace in Figure 2. In the
figure, the difference between the American (KBOS, KDFW) and
the European (EHAM, EIDW, ESGG, LSZH, ESOW) airspaces
is clearly visible. For the American airports, the performance
difference between the different methods is not as big as for the
European airports, but it should be mentioned, that the baseline
methods performs already quite well on KBOS and KDFW, in-
dicating, that the American corpora are less complex. This could
also be the result of the higher number of samples for read-back
error classes for the American airports compared to the European
airports as seen in the label distribution Figure 1.

But the more important observation is, that the F1 scores on
the European airports drastically improve when using the two-
stage approach with noisy labels and augmented data. Inter-
estingly, just for EHAM, the two-step noisy approach reaches
the same performance as the two-stage approach with noisy la-

Fig. 2: F1 scores for the individual airport airspaces. The Amer-
ican airports are marked in blue



Table 4: Mean F1, recall and precision scores over all airports for the different data handling methods with scores for each read-back
error class. The experiments are repeated thrice and the mean is given. The standard deviation is given in brackets.

Method Correct (%) Partial (%) Wrong pair (%) Missing (%) Wrong (%)

Precision

Rule-based 86.14 66.85 27.01 15.82 32.74
Baseline 78.77 (±0.42) 33.90 (±5.5) 81.39 (±0.6) 52.85 (±3.9) 2.77 (±2.0)
w. CE 81.08 (±0.7) 18.7 (±4.1) 79.9 (±11.0) 40.21 (±19) 9.3 (±6.2)
Aug 82.3 (±1.8) 27.17 (±4.4) 84.33 (±2.2) 41.44 (±4.9) 12.30 (±0.4)

Two-stage noisy 82.72 (±1.1) 57.49 (±0.8) 74 (±1.4) 49.7 (±0.6) 20.69 (±11.1)
Two-stage noisy + Aug 88.13 (±0.5) 57.49 (±0.8) 82.94 (±0.9) 44.47 (±5.8) 31.24 (±1.8)

Recall

Rule-based 66.85 52.89 27.01 15.82 54.86
Baseline 87.2 (±0.8) 36.45 (±7.7) 53.6 (±7.5) 41.72 (±3.8) 1.2 (±0.8)
w. CE 87.58 (±2.3) 24.10 (±1.5) 64.54 (±2.1) 38.46 (±18.8) 10.09 (±8.1)
Aug 67.16 (±5.8) 31.75 (±3,4) 56.08 (±3.9) 63.41 (±6.9) 39.93 (±5)

Two-stage noisy 85.0 (±0.9) 50.6 (±5.3) 60.4 (±3.9) 46.9 (±2.5) 5.77 (±1.7)
Two-stage noisy + Aug 76.49 (±0.7) 62.25 (±3.2) 57.49 (±0.9) 78.24 (±8.1) 60.44 (±6.2)

F1

Rule-based 73.22 40.17 25.3 17.11 36.51
Baseline 82.48 (±0.61) 33.95 (±6.3) 57.3 (±5.7) 43.48 (±1.3) 1.65 (±0.1)
w. CE 83.5 (±8.0) 20.46 (±2.9) 66.33 (±4.6) 35.77 (±16.6) 8.73 (±7.1)
Aug 72.75 (±4.1) 27.57 (±1.6) 63.31 (±3.5) 45.11 (±1.8) 17.65 (±0.2)

Two-stage noisy 82.98 (±0.4) 47.53 (±4.2) 61.4 (±2.1) 46.79 (±1.7) 7.77 (±3.2)
Two-stage noisy + Aug 80.86 (±0.9) 58.77 (±0.3) 63.8 (±0.4) 52.3 (±5.7) 39.69 (±3.1)

bels and augmented data. This indicates, that there is an influ-
ence of the domain or air-space mismatch, between the Euro-
pean airspaces and the noisy labels, obtained from the American
airspaces. By using the augmented data in the second step of the
two-stage approach with noisy labels, the American bias, that is
introduced by the noisy labels is cured.

6. CONCLUSION

In this work, we demonstrate the first fully machine learning
based model for multi-class read-back error detection. In contrast
to previous works who propose machine learning based models
for binary read-back error classification, our model is capable
of distinguishing the classes Correct, Partial, Wrong,
Missing read-back and Wrong Pair. We evaluate different
methods to overcome, the highly unbalanced and low-resource
scenario for the read-back error classes. We introduce a class-
wise data augmentation method and a rule-based noisy labeling
approach to generate noisy labeled data. We incorporate this
data in our two-step training approach using noisy labels in the
first step and augmented data in the second step. We show, that
this method reaches an F1 score of 59.11% on unseen airspaces
and outperforms the other investigated methods, like the two-step
noisy label training without augmented data, by at least 10%.
Furthermore, we show that this method performs consistently
well over all error classes, while the other methods show per-
formance drops, especially for the Wrong read-back class. Ad-
ditionally, we can show, that using augmented data in the second
step of the two-step training is crucial for out-of-airspace noisy

labeled data, since it allows to overcome the bias of the airspace-
mismatch. Therefore our proposed two-stage method with noisy
labels and augmented data is an effective way to improve read-
back error detection, even in low-resource scenarios. We addi-
tionally want to emphasize, that this method is not restricted to
read-back error detection and could be also used in other low-
resource domains, where there is a domain mismatch between
noisy labels and the test data.

7. FUTURE WORK

Initial experiments with other evaluation metrics for imbalanced
datasets, like Focal loss [25] did not show significant improve-
ments over weighted cross-entropy loss, but we will explore ad-
ditional metrics in future experiments. We also want to address
the low scores of Wrong read-back by improving our data aug-
mentation method. To reduce the occurrence of false alarms for
read-back errors, an additional focus lies on improving the ac-
curacy scores, without compromising on the F1 scores. This is
equivalent to reaching higher F1 scores for the majority class
Correct, which covers over 90% of the samples in a real-life
ATC communication. We additionally want to apply our two-
stage method with noisy labels and augmented data to other low-
resource domains and evaluate it against pure data augmentation
and pure noisy label training.
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